Catégories
anesthésie-réanimation ar101 médecine top

Réflexion sur le réveil en fin d’intervention

Ce mois ci un édito d’Anesthesiology ouvre une réflexion sur la ventilation des patients endormis bénéficiant d’une ventilation mécanique.

Cet article permet de s’interroger sur les modalités optimales de ventilation mécanique d’un patient aux poumons sains (sujet dont la pertinence équivaut à peu près à de la sodomie de diptère en vol dans 98% des cas) et sur les modalités de réveil. L’auteur se pose un peu en visionnaire. Après une courte explication de texte sur le réveil des patients, il propose de laisser les patients en hypercapnie légère durant les interventions. Les arguments sont plus que minces et non évalués scientifiquement, mais l’auteur a envie de remettre en question les pratiques alors il se lâche ! je me demande sincèrement comment ce genre d’édito passe dans de grandes revues internationales comme ça… S’il suffit de pondre une idée et d’écrire trois lignes invitant la terre entière à changer de pratique, je commence demain.

Peu importe, ça me donne une excuse pour causer du réveil en anesthésie 🙂

Catégories
livres médecine plongée sport

La plongée en apnée. Physiologie. Médecine. Prévention.

Ce traité de médecine subaquatique dédié à l’apnée est excellent. Son auteur a une expérience incroyable du sujet et il fait incontestablement preuve d’un grand talent pédagogique pour nous transmettre ses connaissances.

L’historique nous situe bien dans le temps et l’espace les origines de l’apnée (bassin méditerranéen et asie du sud-est)

Ensuite l’auteur rappelle les principes de l’immersion puis évoque la physiopathologie de la plongée en apnée en disséquant l’accidentologie et en proposant des moyens préventifs.

En résumé, on peut retenir que :

  • l’immersion mobilise d’importants volumes sanguins vers le thorax
  • la physique de l’immersion « égalise les différences terrestres de perfusion d’organes »
  • l’hyperventilation prolonge certes la durée de l’apnée en augmentant la réserve alcaline mais précipite le sujet en zone de risque pour un événement anoxique
  • il existe une très grande variabilité intra et interindividuel de l’hyperventilation
  • les accidents anoxiques sont le résultats de la conjugaison de la perte de l’alarme acide (du fait d’une hyperventilation préalable) et de la consommation d’oxygène pouvant se majorer par l’effort lié à la remontée ajoutée de la diminution de la pression barométrique à la remontée faisant dramatiquement chuter la pression partielle en oxygène dans le sang et les alvéoles pulmonaires
  • l’hyperventilation favorise également une vasoconstriction cérébrale sensibilisant le cerveau à la souffrance hypoxique
  • il faut absolument éviter les plongées en apnées répétées car
    • l’équilibration du CO2 stocké durant l’apnée sur les tampons mets plus d’une dizaine de minutes à s’équilibrer en surface
    • l’exposition à un risque d’accident de décompression augmente rapidement (stockage d’azote dissous dans les tissus au fil des plongées couplé à une remontée rapide)
  • la bradycardie liée à l’apnée est peut être un phénomène de préservation de la consommation de l’oxygène héritée de l’évolution
  • la bradycardie d’immersion en apnée est déclenchée par l’apnée et l’immersion de la face en eau froide
  • la bradycardie peut être associée à d’autres phénomènes électrophysiologiques tels que des extrasystoles ventriculaires ou des troubles de conductions pouvant être incriminés dans la genèse de certains accidents (rare mais possible)
  • la bradycardie du plongeur en apnée est associée à une vasoconstriction musculaire intense
  • le lactate généré dans le muscle, libéré à la levée de la vasoconstriction musculaire en fin de plongée potentialise la chute du pH et l’augmentation de la PaCO2 du fait des tampons relarguant du CO2
  • les gastralgies sont un effet de l’immersion et des variations de pression hydrostatique

En conclusion, l’auteur rappelle que l’apnée doit être un sport encadré médicalement. Et il prodigue ses conseils :

  • il faut limiter l’hyperventilation à 3-4 mouvements respiratoires amples,
  • il faut limiter la durée de l’apnée à 90 s,
  • la plongée doit s’effectuer en binôme avec un observateur dans l’embarcation disposant de moyen de remonter le plongeur,
  • il faut limiter le nombre de plongées par heure : pas plus de 6 – 8 plongées,
  • il faut savoir réguler ses efforts lors de la remontée,
  • il faut savoir sortir de l’eau pour se reposer,
  • il faut limiter l’usage des locoplongeurs qui repoussent les limites.

La plongée en apnée. Corriol

 

Un bon article par ici :

J Appl Physiol. 2009 Jan;106(1):284-92. Epub 2008 Oct 30.

The physiology and pathophysiology of human breath-hold diving.

Lindholm PLundgren CE.

Department of Physiology and Pharmacology, Karolinska Insitutet, Stockholm, Sweden. peter.lindholm@ki.se

Abstract

This is a brief overview of physiological reactions, limitations, and pathophysiological mechanisms associated with human breath-hold diving. Breath-hold duration and ability to withstand compression at depth are the two main challenges that have been overcome to an amazing degree as evidenced by the current world records in breath-hold duration at 10:12 min and depth of 214 m. The quest for even further performance enhancements continues among competitive breath-hold divers, even if absolute physiological limits are being approached as indicated by findings of pulmonary edema and alveolar hemorrhage postdive. However, a remarkable, and so far poorly understood, variation in individual disposition for such problems exists. Mortality connected with breath-hold diving is primarily concentrated to less well-trained recreational divers and competitive spearfishermen who fall victim to hypoxia. Particularly vulnerable are probably also individuals with preexisting cardiac problems and possibly, essentially healthy divers who may have suffered severe alternobaric vertigo as a complication to inadequate pressure equilibration of the middle ears. The specific topics discussed include the diving response and its expression by the cardiovascular system, which exhibits hypertension, bradycardia, oxygen conservation, arrhythmias, and contraction of the spleen. The respiratory system is challenged by compression of the lungs with barotrauma of descent, intrapulmonary hemorrhage, edema, and the effects of glossopharyngeal insufflation and exsufflation. Various mechanisms associated with hypoxia and loss of consciousness are discussed, including hyperventilation, ascent blackout, fasting, and excessive postexercise O(2) consumption. The potential for high nitrogen pressure in the lungs to cause decompression sickness and N(2) narcosis is also illuminated.

PMID: 18974367 [PubMed – indexed for MEDLINE]Free Article